首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11753篇
  免费   1606篇
  国内免费   2403篇
化学   13176篇
晶体学   115篇
力学   297篇
综合类   85篇
数学   56篇
物理学   2033篇
  2024年   24篇
  2023年   188篇
  2022年   364篇
  2021年   560篇
  2020年   850篇
  2019年   626篇
  2018年   445篇
  2017年   468篇
  2016年   548篇
  2015年   535篇
  2014年   603篇
  2013年   966篇
  2012年   789篇
  2011年   639篇
  2010年   496篇
  2009年   621篇
  2008年   684篇
  2007年   675篇
  2006年   682篇
  2005年   635篇
  2004年   618篇
  2003年   524篇
  2002年   427篇
  2001年   344篇
  2000年   317篇
  1999年   229篇
  1998年   211篇
  1997年   242篇
  1996年   211篇
  1995年   216篇
  1994年   186篇
  1993年   183篇
  1992年   162篇
  1991年   84篇
  1990年   70篇
  1989年   55篇
  1988年   50篇
  1987年   45篇
  1986年   23篇
  1985年   29篇
  1984年   25篇
  1983年   14篇
  1982年   18篇
  1981年   15篇
  1980年   18篇
  1979年   12篇
  1978年   8篇
  1977年   5篇
  1976年   9篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
22.
CO2 is considered as the primary greenhouse gas, resulting in a series of serious environmental problems that affect people's life and health. Carbon capture and sequestration has been implemented as one of the most appealing pathways to control and use CO2. Here, we rationally integrate various functional sites within the confined nanospace of a microporous metal–organic framework (MOF) material, which is constructed by mixed-ligand strategy based on metal-adeninate vertices. It not only exhibits excellent stability but also can efficiently transform CO2 and epoxides to cyclic carbonates under mild and cocatalyst-free conditions. Additionally, this catalyst shows extraordinary recyclability for the CO2 cycloaddition reaction.  相似文献   
23.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
24.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
25.
ABSTRACT

We present the results of a combined experimental and computational study of the structures of gas-phase M+(N2O)n (M?=?Li, Al) complexes. Infrared spectra were recorded in the region of the N2O asymmetric (N?=?N) stretch using photodissociation spectroscopy employing the inert messenger technique. Unlike in our previous studies on M+(N2O)n (M?=?Cu, Ag, Au and M?=?Co, Rh, Ir) complexes, N– and O–bound isomers in this case are near isoenergetic and are not distinguished spectroscopically at this resolution. In the case of Li+ complexes, there is, however, evidence for the presence of bound N2 moieties, indicating the presence of inserted, OLi+N2(N2O)n–type structures. The weak N2 band lies to the blue of the signature of molecularly N– and O–bound ligands and is well–reproduced in the simulated spectra of energetically low-lying structures computed from density functional theory. No such inserted isomers are observed in the case of Al+(N2O)n complexes whose infrared spectra can be understood on the basis of molecularly-bound N2O ligands. The differences in M+(N2O)n structures observed for these closed–shell, ns2, metal centres relative to other metal cations are discussed in terms of the likely bonding motifs.  相似文献   
26.
The hexapyrrole-α,ω-dicarbaldehydes 1 a and 1 b were metallated with CuII, NiII, and PdII to give bimetallic complexes where a pair of 3 N+O four-coordinate metal planes are helically distorted and the central 2,2′-bipyrrole subunit adopts a cis or trans conformation. X-ray crystallographic analysis of the bisCu complex revealed a closed form with a cis-2,2′-bipyrrole subunit and an open form with a trans-2,2′-bipyrrole subunit. The bisPd complexes took a closed form both in the solid state and in solution. They are regarded as single helicates of two turns and the energy barrier for the interchange between an M helix and a P helix was remarkably influenced by the bulky 3,3′-substituent of the central 2,2′-bipyrrole subunit. Although the bisNi complexes adopt a closed form in the solid state, they exist as a homohelical open C2-symmetric form or a heterohelical open Ci-symmetric form in solution. A theoretical study suggested that the closed form of 1 a Pd was stabilized by the Pd–Pd interaction. Compound 1 a Pd was reversibly oxidized by one electron at 0.14 V versus ferrocene/ferrocenium (Fc/Fc+) and this oxidized species showed Vis/NIR absorption bands at λ=767 and 1408 nm.  相似文献   
27.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
28.
Vera Deneva 《Molecular physics》2019,117(13):1613-1620
ABSTRACT

The tautomeric optical sensors based on 4-(phenyldiazenyl)naphthalen-1-ol exist in their pure enol tautomeric form as free ligands, while the addition of metal ion fully shifts the equilibrium towards the keto tautomer allowing a red shift in the measured absorbance. This effect is achieved when a side ionophore group is connected to a tautomeric backbone by a spacer in a way that stabilizes the enol form via hydrogen boding. When the ionophore captures the metal ion the keto form is stabilized due to C─O tautomeric group participation in the complex. In the current study, we model theoretically the effect of symmetric tweezer like ionophores (RCOXCOR, where X, being CH or N, is the linker to the tautomeric backbone) on the tautomeric state and complexation ability of 4-(phenyldiazenyl)naphthalen-1-ol containing ligands. It was found that enol form stabilisation is achieved when R?=?NMe2, independing on the linker. Both ligands are unsuitable for capturing alkali metal ions. The calculations predict that the complexation with alkali earth metal ions could lead to a full shift of the tautomeric equilibrium towards keto tautomer.  相似文献   
29.
Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters with t‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611  相似文献   
30.
Guided by the self-penetrating features can improve the stability of metal organic frameworks (MOFs), an unprecedented 3D self-penetrated framework, {[Zn (tptc)0.5(bimb)]·H2O}n ( NUC-6 , here NUC corresponding to North University of China), with 3D (4,4)-c {86} net, was designed. Benefit from the high chemical stability and excellent luminescent property, NUC-6 can be act as an efficient multi-response chemo-sensor in detecting dichloronitroaniline pesticide and nitrofuran antibiotics in water with the detection limits are 116 ppb for DCN pesticide, 16 ppb for NFT antibiotic, and 12 ppb for NTZ antibiotic. Besides, the mechanisms of luminescence quenching were revealed from the viewpoint of internal filter effect (IFE) and photo-induced electron transfer (PET), implied by the optical spectroscopy and quantum chemical calculation. This work provides a promising strategy to design stable MOFs by improving the self-penetrating features and to expand their practical applications in the detection of organic pollutants in aqueous medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号